Computer modeling, and in particular agent-based modeling, has been successfully used in many scientific fields, transforming scientists' practice. Educational researchers have come to realize its potential for learning, and studies have suggested that students are able to understand concepts above their expected grade level after interacting with curricula that employ modeling and simulation. However, most simulations are 'on-screen', without connection to the physical world. Therefore, real-time model validation is challenging with extant modeling platforms. I have designed a technological and pedagogical framework to enable students to connect computer models and sensors in real time, as to validate, compare, and refine their models using real-world data. In this paper, I will focus on both technical and pedagogical aspects, describing pilot studies that suggest a real-to-virtual reciprocity which catalyzes further inquiry toward deeper understanding of scientific phenomena.
Blikstein, P. (2014). Bifocal Modeling: Comparing Physical and Computational Models Linked in Real Time. In Nijholt, A. (Ed.), Playful Learning Interfaces. Netherlands: Springer.